If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=-49
We move all terms to the left:
x^2-18x-(-49)=0
We add all the numbers together, and all the variables
x^2-18x+49=0
a = 1; b = -18; c = +49;
Δ = b2-4ac
Δ = -182-4·1·49
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8\sqrt{2}}{2*1}=\frac{18-8\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8\sqrt{2}}{2*1}=\frac{18+8\sqrt{2}}{2} $
| -3x2+18x-24=0 | | (4x-6)=(3x-3) | | 10x+36=0 | | A=5y(1-6y) | | (x+5)(x–5)=11 | | 5-2x=6(1-x) | | 4/5x-2=2.1/2x-1/5 | | x^-2/3=1/25 | | 2(x+3)+3x=5(x+2) | | 3x+1/3=1/2 | | (p+6)2=9 | | -3x-4+4(x+1)=7x-1 | | (2x+3)²+4=29 | | 2(x-1)=-5x8-7x | | (c*c)-36=-37 | | 30+x=35 | | 3x+50+80=180 | | 2n^2-15+13=0 | | 6x=(11-3) | | 4(2-5x)=x+3 | | 6=t2 | | 5^x+3-5^x-1=3120 | | r²+12=61 | | 3^y=36 | | |2x+5|−4=8 | | 1/7x^2,1/21x-1=0 | | 10{x}^{2}=5x+0.6 | | 1748=π*9^2*h | | −7j +12=19 | | -35=5*x+10 | | 5/1-y-7/2-2y=4 | | 5/1-y+7/2-2y=4 |